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Abstract 

A Nonlinear Generalized Minimum Variance control law is derived for systems represented by an input-output state dependent 

nonlinear subsystem that may be open-loop unstable.  The solution is obtained using a model for the multivariable discrete-time process 

that includes a state-dependent (nonlinear and possibly unstable) model that links the output and any unstructured nonlinear input 

subsystem. The input subsystem can involve an operator of a very general nonlinear form, but this has to be assumed to be stable.  This is 

the first NGMV control solution that is suitable for systems containing an unstable nonlinear sub-system which is contained in the state-

dependent model.  

The process is also assumed to include explicit common delays in input or output channels.  The generalised minimum variance cost 

index to be minimised involves both error and control signal costing terms but to increase generality weighted states are also included in 

the cost index.  The controller derived is simple to implement considering the complexity of the system represented.  If the plant is stable 

the controller structure can be manipulated into an internal model control form.  This form of the controller is like a nonlinear version of 

the Smith predictor which is valuable to provide confidence in the solution.  
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1.0     Introduction 

The effect of nonlinearities can be very destabilising 

since they are operating point dependent and they can also 

introduce mysterious behaviour for those more familiar 

with essentially linear systems.  Hysteresis, for example, is 

found in many valves and magnetic systems and is not 

only destabilising but limits tracking performance.  Over 

the last decade nonlinear predictive control laws have been 

proposed for such systems and these may be very useful 

for high value important loops but they are not a 

replacement for say existing PID controls where improved 

performance is desired. This realization has motivated the 

development of controllers which have a more classical 

structure, that can be linked to PID control and Smith 

predictors but offer a more rigorous scientific basis. 

The MV controller was derived by Åström (1979 [1]), 

assuming the plant was linear and minimum-phase, and 

was later derived for processes that could be non-

minimum phase.  Hastings-James (1970 [2]) and later 

Clarke and Hastings-James (1971 [3]) modified the first 

of these control laws by adding a control signal costing 

term.  This was termed a Generalized Minimum Variance 

(GMV) control law and enabled non-minimum phase 

processes to be stabilized.    

A family of so-called Nonlinear Generalized Minimum 

Variance (NGMV) controllers was derived more recently 

for nonlinear model based multivariable systems.  The 

assumption was made that the plant model could be 

decomposed into a set of delay terms, a very general input 

nonlinear subsystem that had to be stable and a linear 

subsystem that could be represented in polynomial matrix 

or state equation form and include unstable modes.   This 

problem was analysed by Grimble (2004 [5], 2005 [6]) 

and Grimble and Majecki (2004 [7], 2006 [8]).  

Unfortunately these solutions did not allow for systems 

that had nonlinear subsystems that were open loop 

unstable (the linear subsystems could be unstable) and 

nonlinearities were only allowed on input subsystems.  

The new control law provides for a much more general 

system description.  The nonlinear (NL) system model 

includes subsystems that provide alternative ways of 

modelling the nonlinearities. The addition of a state-

dependent model subsystem that may be unstable and 

follows the more general input operator model can be used 

for representing nonlinear output subsystems such as 

sensor nonlinearities.   

The main objective is to introduce a GMV controller for 

nonlinear multivariable processes that is flexible.  The 

criterion is chosen to include dynamic weightings to 

enable frequency response shaping but also to ensure a 

relatively simple controller is obtained.  When the system 

is linear the results revert to those for the usual GMV 

controller.   

The input plant sub-system can be in a general 

nonlinear operator form, which might involve, transfer-

operators, neural networks or nonlinear function look-up 

tables.  The state-dependent model links to the system 

outputs and has the advantage that a prediction equation is 

easily obtained for this part of the nonlinear system.  The 

solution of the NGMV control problem for a system with 

linear state-space models has been considered in [9] but 

the use of a state-dependent model that may be open-loop 
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unstable, is new. There are no restrictions regarding the 

stability or minimum-phase properties of the linear or 

state-dependent plant blocks but no structure is assumed 

known for the input subsystem and hence this must be 

assumed to be stable. 

The solution for the state-space based version of the 

NGMV optimal control law is relatively simple. For linear 

systems stability is ensured in GMV control when the 

combination of a control weighting and error weighted 

plant model is strictly minimum-phase. For nonlinear 

systems it is shown that a related nonlinear operator must 

have a stable inverse. A result is obtained that guarantees 

the existence of at least one set of weights that ensures the 

existence of this inverse.  That is, if say a PID controller 

exists (or classical controller), that will stabilize the 

nonlinear system without transport delay elements, then it 

can be shown that a set of cost weightings can be defined 

to guarantee the existence of this inverse and thereby 

ensure the stability of the closed-loop (Khalil 2002 [22]).  

  

2.0   Nonlinear Operator and State-Dependent Models 

The system, shown in Fig. 1, includes the input 

nonlinear plant model and the output state-dependent plant 

model. The system is further augmented by stochastic 

models for the reference and disturbance signals. The 

output of the unstructured nonlinear system is denoted 

1( )u t k and this acts as an input to the state-dependent 

block.  The first sub-system is of a general nonlinear 

operator form 1(.,.)  where the model without explicit 

delay
1

(.,.)
k

and 1 1( ) ( )( )ku t u t .  The state-dependent 

nonlinear model may be represented by the input-output 

operator 0 (.,.) , or without delay 0 (.,.)k .  The total 

output from the state-dependent block, when disturbances 

are null, may be written as    0 1
( ) ( ) ( ).ky t u t u t   

 

 
Fig. 1:   Nonlinear Unstructured and State-Dependent Plant Model  

     Including Disturbance and Reference Models 1 1( ( ) ( ( )).,.)ku t u t  

 

 The zero-mean white measurement noise is denoted 

{ ( )}v t  and it has a covariance matrix
f

R .  There is no loss 

of generality in assuming that the zero-mean, white noise 

signals: { ( )}t  and  0
( )t  that feed the reference and 

disturbance models, have identity covariance matrices and 

a Gaussian distribution. It will be shown later that the 

special structure of the system leads to a prediction 

equation, which utilises a time-varying Kalman filter 

(Grimble and Johnson 1988 [25]).  The signals shown in 

the system model of Fig. 1 may be listed in terms of 

nonlinear input-output operators as follows: 

Error signal: ( ) ( ) ( )e t r t y t 
  

(1) 

Reference signal: ( ) ( )rr t t   (2) 

Observations signal: ( ) ( ) ( )z t y t v t    (3) 

Noisy error signal:  
0 ( ) ( ) ( )e t r t z t 

  
(4) 

 The time-functions can be considered to be contained 

in extensions of the discrete Marcinkiewicz space 

2 ,
( )nm R R

  ([12], [13]).  This is the space of time 

sequences with time averaged, square summable signals, 

which have finite power.    The second nonlinear 

subsystem has a well-defined structure and is represented 

by the state-dependent model equations, shown in Fig.1, 

introduced in the next section.  

2.1 Unstructured and Structured NL Plant Sub-Systems 

 The nonlinear system models will now be defined 

(Slotine and Li, 1991 [11]).   Note that the system is 

assumed to be in operation from time t  and hence 

initial condition effects will not need to be considered in 

the theory.  In practice there will be a need to initialize the 

controller but this is discussed later. 

Total Nonlinear Plant Model: 
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     k

k
u t z u t   (5)  

Here k denotes the magnitude of the common delay 

elements in the output signal paths.  The delay free 

input/output model may be written as:    ku t  

 0 1
( )k k u t and the total forward path NL plant 

model: 

     0 1 0 1
( ) ( ) ( )

k

k k k
u t u t z u t


 

  
(6) 

The signal input to the nonlinear state dependent dynamics 

is denoted as: 1 1( ) ( )(.,.)
ku t u t . The nonlinear 

subsystem: 
1k

 is assumed to be finite gain stable but the 

nonlinear state-dependent model 
0k  

may be unstable.  

This latter assumption provides a useful generalisation of 

the NGMV approach, since it is the first time open-loop 

unstable nonlinear components could be included.    

     The second nonlinear plant model 
0k  

is represented 

in the so-called state-dependent state-space form.  This has 

been used for state-dependent Riccati equation optimal 

control solutions (Hammett 1997 [14]) and involves state-

equation matrices that are time-varying since they are 

allowed to depend upon the system states.  It will also be 

used for the reference and cost-function weighting models 

shown in Fig. 1.  Such a model clearly includes Linear 

Parameter Varying (LPV) systems ([18]-[20]) where the 

state models are parameters or input signal dependent. 

There may of course be some difficulty in approximating a 

nonlinear system with a state-dependent plus input 

operator version but the process is very similar to that 

needed in deriving LPV models which have shown 

considerable promise in applications ranging from 

automotive to wind turbines (see Geering 2005, [27]). 

 

Reference and Weighting State Equation Model:  The 

reference and the error weighting models have the state-

space system models, for the ( r m ) multivariable system 

that may be listed as follows:  

Reference model 

( 1) ( ) ( ),r r r rx t x t t   ( ) rn

rx t R
  

(7) 

( ) ( )r rr t x t  and 1 1( ) ( )r r r rz zI      (8) 

Also introduce the dynamic error weighting
 

1
( )c z

  that is 

used in the cost-index defined later.  This gives the 

weighted error signal  1( ) ( ) ( ) ( )p cy t z r t y t   that has 

the following state-space representation: 

Error weighting 

 ( 1) ( ) ( ) ( ) ,p p p px t x t r t y t    ( ) pn

px t R
  

(9) 

 ( ) ( ) ( ) ( )p p p py t x t r t y t  
 

(10) 

 Combining the reference and error equations for the 

above sub-systems obtain the state equations by 

augmenting the state vector as: 1 ( ) ( ) ( )
T

T T

r px t x t x t    .  

Noting equations (7) and (9) the augmented equations may 

be written as: 

1 1 1 1 1( 1) ( ) ( ) ( )x t x t y t t      (11) 

where 

1 1 1

0 0
, ,

0

r r

p r p p

     
            

 

 

(12)

 

 

 

Plant model:  A slight extension of this idea is to allow 

these matrices to be functions of the model input at time t - 

k.  The nonlinear plant output sub-system model is 

therefore assumed to have the following state-dependent 

model form (Cloutier et. al., 1997 [15], 1998 [16]): 

0 0 0 1 0

0 0 1 1 0 0 1 0

( 1) ( , ) ( )

( , ) ( ) ( , ) ( )

x t x u x t

x u u t k x u t

 

  
 (13) 

0 0 1 0 0 0 1 1( ) ( , ) ( ) ( , ) ( )y t x u x t x u u t k  
 

(14) 

where 
0 ( )x t is a vector of sub-system states, 

1( )u t is a 

vector of the state-dependent sub-system inputs and ( )y t
 

is a vector of output signals.  To simplify the notation in 

(13), (14) write
0( )t  

0 0 1( ( ), ( ))x t u t k   and 

similarly for the matrices:
0 0,  and 

0
.   Substituting 

from equations (14)  into (11):  

1 1 1 1 0 1 0 1 10( 1) ( ) ( ) ( ) ( )x t x t x t u t k t     
 
(15) 

Note that the weighted output in equation (10) may now be 

written as: 

 

 0 0 0 1

( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( ))

p p p p r r

p p p r r

y t x t x t y t

x t x t x t u t k

  

    

 
0 1 1 10 ( ) ( ) ( )( )pp x t x t u t k   

 
(16) 

where 0 0pp  
 
and

 1p p r p
     and the 

through term 
0 .p    

 
(17) 

2.2 Combined State Dependent Nonlinear Models 

Let the total combined vector of the state-dependent 

sub-system model states be defined to have the 

form
0 1( ) [ ( ) ( ) ]T T Tx t x t x t .  Thence, the combined state 

vector for the nonlinear sub-systems and the related 

disturbance vector inputs become: 

Total NL System State Model: 

1( 1) ( ) ( ) ( )x t x t u t k t    
  

(18) 

Total NL System Output Model: 

1( ) ( ) ( )y t x t u t k  
  

(19) 

Weighted Plant Error Model: 

1( ) ( ) ( )( )p py t x t u t k  
  

(20) 

Clearly from equations (11), (13) to (16) the combined 

state-dependent system models have the form:  

0

1 10

0
,

 
  
 

 

0

1 0

,
 

  
 

 

0 , 

            
0

1

0
=

0

 
 
 

, 0 0    , 
10p pp

     

where the vectors of signals:   

  0

1

( )
,

( )

x t
x t

x t

 
  
 

   
0 ( )

( )
( )

t
t

t






 
  
 

  

(21) 

For later use define the resolvent operator for the total 

state-dependent augmented system as: 
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1 1 1 1( ( )) ( ( 1) )zI t I t z z        
  

(22) 

2.3 Future Plant Outputs and States 

The expression for a 
0k steps-ahead state-vector, 

where
0k k , may be obtained by generalising the above: 

0 0 0( ) ( 1) ( 2).... ( ) ( )x t k t k t k t x t     

0 0 1( 1) ( 2).... ( 1) ( ) ( )t k t k t t u t k      

0 0 1 0.... ( 1) ( 2) ( 2)t k t k u t k k        

0 1 0( 1) ( 1)t k u t k k       

0 0( 1) ( 2)... ( 1) ( ) ( )t k t k t t t       

0 0 0... ( 1) ( 2) ( 2)t k t k t k         

 0 0( 1) ( 1)t k t k    
 

(23) 

Normally the cost function is defined so that 
0k k  and 

values of the control signal up to time t-1 are therefore 

known, and the future values of these matrices may be 

computed.   These equations may be simplified by 

defining the product of functions at decreasing times: 

 
( ) ( ) ( 1)... ( )

k

j m
a t j a t k a t k a t m


        

The 
0k -steps prediction of the state and output signals will 

therefore be defined from the relationships:  
0 1

0 0
ˆ ˆ( | ) ( ) ( | )

k

j
x t k t t j x t t




  

0 1

11
( ) ( ) ( ) ...

k

j
t j t u t k




     

0

0

1

1 01
.... ( ) ( 1) ( 2)

k

j k
t j t j u t k k



 
      

 
0 1 0( 1) ( 1)t k u t k k       (24)  

and 

0 0 0

0 1 0

ˆ ˆ( | ) ( ) ( | )

( ) ( )

y t k t t k x t k t

t k u t k k

   

   
 (25) 

These equations may be simplified further, using a 

finite pulse response model, defined in the form: 

01

0 1

1
( , ) ( ) ( ) ...k

j

k
k z t j t z

 


  

0 0

0

1 2

1
( ) ( 1)

k k k

j k
t j t j z

  

 
   

 
0 1

0
( 1)

k k
t k z

 
  

 
(26) 

and by introducing the following simplified notation:  
00

1

0
( )

kk

j
t j




 

 
(27) 

obtain: 
0 1

0 0 1
ˆ ˆ( | ) ( | ) ( , ) ( )

k
x t k t x t t k z u t  

 
(28) 

0

0 0
ˆ ˆ( | ) ( ) ( | )

k
y t k t t k x t t  

 1

0 0 1 0 1 0( ) ( , ) ( ) ( ) ( )t k k z u t t k u t k k


     

0

0
ˆ( ) ( | )

k
t k x t t 

 
 01

0 0 0 1( ) ( , ) ( ) ( )
k k

t k k z t k z u t


   
 

(29) 

The total vector of state-estimates for the state-dependent 

subsystems can be written as:  

 
 

 
0

1

ˆ |
ˆ | for 1

ˆ |

x t j t
x t j t j

x t j t

  
   

 
  (30) 

3.0   Kalman Predictor for the State-Dependent System 

The Kalman filter equations introduced below are well 

known (Anderson and Moore, 1979 [24]).  The result 

below is extended in an obvious way to accommodate the 

delays on input channels and through terms. A 

modification is also made to the Kalman filter equations to 

allow for a known bias signal on the   measurements. Note 

that such changes, do not affect the basic stochastic 

relationships, or the gain of the optimal filter.  Recall the 

total system may be represented in the following state-

dependent form that is similar to a known time-varying 

linear system if the past values of states are for the 

moment assumed known. 

Total Plant Model:  

1( 1) ( ) ( ) ( )x t x t u t k t      (31) 

Plant Output Signal 

1( ) ( ) ( )y t x t u t k  
 

(32) 

Observations Signal: 

1( ) ( ) ( ) ( ) ( ) ( )z t y t v t x t u t k v t     
 

(33) 

Controller Input: 

 0 1
( ) ( ) ( ) ( ) ( ) ( ) ( )e t r t z t r t x t u t k v t      

1( ) ( ) ( )e x t u t k v t   
  

(34)
 

where ( )
n

x t R and  0
0re    denotes the 

output map taken from the total system states to the error 

channel.  Note that the controller is one degree of freedom 

so that the Kalman filter is driven from the noisy error 

signal channel.  Clearly the state-vector may be written as: 
1

1( ) ( ) ( ( ) ( ))x t zI u t k t   
 

This expression motivates the definition of the resolvent 

operator for the total system as 1( ( ))zI t   .                               

3.1 Predictor Corrector Estimator Form 

The standard discrete-time Kalman filter equations for a 

time-varying linear state-space model in 

predictor/corrector form, assuming the exogenous signals 

have known means, and with an error input (Grimble and 

Johnson 1988 [25]) are given as: 

1
ˆ ˆ( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )x t t A t x t t B t u t k D t t      

(Predictor)  (35) 

 0 0
ˆ ˆ ˆ( 1 | 1) ( 1 | ) ( 1) ( 1) ( 1 | )fx t t x t t K t e t e t t          

(Corrector)  (36) 

where 
0̂

ˆ( 1| ) ( 1) ( 1| )ee t t C t x t t     

1( 1) ( 1 ) ( )E t u t k v t    
  

(37) 

The Kalman filter gain and Ricatti equations for a system 

with process and measurement noise covariance’s Q and R: 

( 1) ( 1| ) ( 1)T

eK t P t t C t   
 

1[ ( 1) ( 1| ) ( 1) ( 1)]T

e eC t P t t C t R t     
  

(38) 

A priori covariance: 

( 1| ) ( ) ( | ) ( ) ( ) ( ) ( )T TP t t A t P t t A t D t Q t D t    (39) 

A posteriori covariance:   ( 1| 1) ( 1| )P t t P t t   
  

( 1| ) ( 1) ( 1| )eK t t C t P t t   
 

(40) 

Initial conditions:
0

ˆ(0 | 0)x m  and  
0(0 | 0)P P
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Bias terms: ( ) { ( )}t E t   and ( ) { ( )}v t E v t
.
 

Estimator Assumptions:  It is possible to apply the above 

time-varying Kalman filter equations to the combined 

model for the state-dependent sub-systems in equations 

(31) and (32).   The usual assumption will be made that the 

physical system to be controlled is observable and 

controllable from the process noise inputs.  

 

The state-dependent model is of course a function of 

system state variables and these are time-varying with 

nonlinear operating point, however, the equations retain a 

linear state space type of structure.    

4.0   Nonlinear Generalized Minimum Variance Control  

The cost-minimisation problem may now be introduced, 

for the system which is shown in concise operator form in  

Fig. 2.  The optimal NGMV control problem involves the 

minimisation of the variance of 
0

{ ( )}t  in Fig. 2.   The 

signal is to be minimized in a variance sense, where:  

        0
( ) c c ct e t x t u t   

  
(41) 

and the cost-index to be minimised (Grimble, 2005 [17]): 

0 0 0 0{ ( ) ( )} { { ( ) ( )}}T TJ E t t E trace t t    
          

(42) 

where  E   denotes the unconditional expectation.   
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Fig. 2:  Single Degree of Freedom Closed-Loop Control System for the Nonlinear Plant 

              (Output signal to be minimised is shown dotted) 

 

The use of such a criterion in applications has been 

explored by Alpbaz et. al. (1998 [21]) and Grimble (2001 

[10]). The so-called inferred output signal  0
( )t  that is 

minimised includes a dynamic cost-function 

weighting 1
( )c z

 , that acts on the error signal.  This 

weighting is represented by a state-space sub-system, as 

described in §2, with weighted output  ( )p cy t e t .   

 That is, if the system model is augmented with the 

weighting 1
( )c z

 dynamics, then the first component of 

0 ( )t  can be represented by (20) as: 

( ) ( )p py t x t 1( )( )u t k  ,  through the definition of 

appropriate output maps in (16).  The signal  0
( )t  also 

includes the state weighting term:    ( )z cy t x t  that can 

be nonlinear, and it enables a cost-weighting to be 

introduced on all the state-dependent model subsystem 

states. If the state-dependent plant and reference/weighting 

subsystem states are denoted by 
0z  

and 
1z

, respectively, 

then the state weighting term: 

  0 0 1 1
( ) ( ) ( ) ( ) ( )z c z z zy t x t x t x t x t      (43) 

The combined weighted error and state equation model 

may be expressed as: 

  ( ) ( ) ( ) ( )c p z c cy t y t y t e t x t   
 

(44) 

In terms of the total state vector for the system:
       1

( ) ( ) ( )c c cy t e t x t x t u t k       (45) 

where 

0 1 0 0 1 1( ) ( )p z p z  
            (46)

 
The final term in the criterion is the nonlinear dynamic 

control signal costing operator term:   c
.u t    If the 

smallest delay in each output channel of the plant is of 

magnitude 
0k  steps this implies the control at time t 

affects the output at least 
0k steps later and the control 

signal costing is defined to have the form: 

     0

c c

k

ku t z u t



  

(47) 

where 
0k k

 
if the state models include through terms, or

 

0 1k k  if the through terms are null and one additional 

explicit step delay is therefore present in the plant model.  

The control costing 
c k

 will often be a linear operator but 

it may also be chosen to be nonlinear to cancel static input 
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nonlinearities in appropriate cases. However, it may also 

be a dynamic nonlinear operator of quite a general form.  

The control weighting operator ck  is assumed to be full 

rank, symmetric and invertible.   The choice of dynamic 

weightings is critical to ensuring stability and the design, 

and the weighting 
c

 is typically a low-pass filter and
c

  

is a high-pass filter.              

4.1 Solution of the NGMV Control Problem 

The solution of the optimal control problem is 

straightforward and follows a minimum variance strategy 

working in the time-domain.  It is obtained by introducing 

a prediction equation and by expanding the resulting 

expression for the signal that enters the cost-function. This 

signal may be referred to as a minimised output 
0

{ ( )}t , 

since it is not a signal that exists physically.  Recall that the 

signal,  

       
0
( ) ( ) ( )( )c c c c ct e t x t u t y t u t     

 
(48) 

where from (45) the minimised output, may be written as: 

0 1( ) ( ) ( ) ( )( )ct x t u t k u t                       (49) 

Recall that the signal: 1 1
( ) ( )

k
u t u t

 
and that the control 

signal weighting was defined as: 

( )( )cu t  0 ( )( )
k

ckz u t


 , so that (49) becomes: 

0

0 1
( ) ( ) (( ) )( )

k k

k ckt x t z u t k   
   

  
(50) 

4.2 The Prediction Equations 

The prediction equation was obtained using equation 

(28) with the finite impulse response term, as: 
0 1

0 0 1
ˆ ˆ( | ) ( | ) ( , ) ( )

k
x t k t x t t k z u t  

  
(51)

 where from equations (21) and (27): 

0

21 1

0 
  
 

   

and

  
00

1

0 00
( ) ( 1) ( 2)... ( )

kk

j
t j t k t k t




      

 

(52) 

The predicted values of the state related terms in equation 

(50) may therefore be written as:  

0

0 0 0
ˆ ˆ( ) ( | ) ( ) ( | )

k
t k x t k t t k x t t    

 
1

0 0 1
( ) ( , ) ( )t k k z u t

 
 

(53) 

where the operator 1

0( , )k z
 
was defined by (26).  The 

k  steps-ahead prediction of the signals: ( )cy t  and 
0
( )t  

follow from (44), (50) and (53), as follows:
   

 

0 0 0
ˆ ˆ( | ) ( ) ( | )cy t k t t k x t k t   

     

0 1 0( ( ) )( )kt k u t k k   

0

0 0 0 1
ˆ( ) ( | ) ( ) ( )

k k

kt k x t k t t k z u t 


    

 
Note that when the through term in the plant model is null 

there is effectively one more delay element and
0 1k k  , 

and from (45) in this case 0( )t k  will also be null. Thus, 

the term
 

0

0 1
( )

k k

kt k z


 can be replaced as: 

0 1( ) kt k   giving: 

0
ˆ ( | )cy t k t 0 0 0 1

ˆ( ) ( | ) ( ) ( )kt k x t k t t k u t     
 

0

0
ˆ( ) ( | )

k
t k x t t 

   
1

0 0 0 1
(( ( ) ( , ) ( )) ) ( )kt k k z t k u t 

   
 

(54) 

and 0 00

ˆ ˆ( | ) ( | ) ( )( )c ckt k t y t k t u t    
 

0 1

0 0 0
ˆ( ) ( | ) (( ( ) ( , )

k
t k x t t t k k z 

   
  

0 1( )) ) ( )k ckt k u t  
   

(55) 

4.3 NGMV Control Problem Cost-Function                                  

The cost-function involves the minimization of the 

variance of the weighted error, states and control signals.  

The variance: 
0 0 0 0{ ( ) ( )}TJ E t k t k                       (56)   

may be written in terms of the prediction 0 0
ˆ ( | )t k t 

 
and 

the prediction error: 0 0
( )t + k | t , noting these signals are 

orthogonal in a statistical sense: 

0 0 0 0 0 0 0 0
ˆ ˆ{ ( | ) ( | )} { ( | ) ( | )}T TJ E t k t t k t E t k t t k t        

 

                          
(57) 

The prediction error 0 0
( | )t k t   does not depend upon 

control action and hence the cost is clearly minimized by 

setting the predicted values of the signal
0
( )t , for 

0k  

steps-ahead, to zero.  Setting the predicted values of (55) 

to zero provides two possible expressions for the control.   

Reminder of Assumptions:    Observe that this latter 

expression includes the Kalman filter state estimate and 

the finite pulse response block, which depend upon the 

state-dependent models.  The NL input plant subsystem 

1k
 was assumed to be finite gain stable but no structure 

was assumed.  However, the state-dependent nonlinear 

system 
0k  

may be unstable.  For optimal state estimation 

the assumption was made that the required future values of 

the state-dependent models could be computed. Finally 

note that the control cost-weighting was defined, so that 

the inverse of 
c k

 exists, and thence the inverse of the 

operators in (59) or (60) may be found.   

 

Theorem 1:   NGMV State-Dependent Controller  

Let the operator 0  represent the mapping from the signal 

1( )u t  to the signal 
0
( )t to be minimised: 

1 0 0 10 00( )( ) (( ( ) ( )) )( )c ck k
u t t k t k u t   

 
(58) 

Assume that the weighting operators ,c c
 and 

c  
are 

chosen so that the NL operator: 0 1( )ckk   has a 

finite-gain 
2m  stable causal inverse, to ensure the system 

is closed-loop stable. The NGMV optimal controller to 

minimize the variance of the weighted error, states and 

control signals may then be computed.   The NGMV 

optimal control signal may be expressed in the two 

alternative forms (59) and (60): 

 
1

1

0 0 0 1( ) ( ( ) ( , ) ( ))ck ku t t k k z t k 


    

 
0

0
ˆ( ( ) ( | ) )

k
t k x t t  

 
(59) 

or 

01

0
ˆ( ) ( ) ( | )[ k

cku t t k x t t

  
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1

0 0 0 1
( ( ) ( , ) ( )) ( )]kt k k z t k u t 

   
 

(60) 

where 0 0pp    and 1p p r p
    , 

0 0 1 1( ) ( )p z p z
      

and 
0p    .         ● 

Proof:   The proof of optimality involves collecting the 

above results, subject to the assumptions.  To minimize 

(56) note the simplification to (57) and that this is a 

minimum when 0 0
ˆ ( | ) 0t k t   .   This signal is given by 

(55) and the expression for optimality involves setting (55) 

to zero.   This equation can be satisfied by either of the 

two expressions for the optimal control (59) or (60). The 

stability of the closed loop system is discussed below. 

    

Remarks:  The expressions for the NGMV optimal control 

signal lead to the two alternative structures, but that shown 

 

in Fig. 3 is the most useful for implementation. It is 

important to note that although the controller does seem to 

depend upon a nonlinear system inverse the existence of 

this inverse can be demonstrated by construction. That is 

the main inverse involved is that due to the inner block in 

Fig. 3 and this can be implemented as shown. There is a 

practical issue of computing the solution of the algebraic 

loop involved, which can be faster than is available in 

Simulink if the particular form of the nonlinearity is taken 

into account [7].    

      The order of the Kalman filter depends only on the 

delay-free subsystems.  The channel delays do not 

therefore inflate the order of the filter required. The system 

matrices involved in the state dependent model can be 

treated as known.  They involve future values of the 

control and states, which can be predicted.         
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Fig. 3:   Control Signal Generation and Controller Modules 

 

Implementation Issues and Stability:  The controller 

involves a time-varying Kalman filter with predictor stage 

and this may be illustrated in the more physically intuitive 

structure of the controller in Fig. 4. Introducing the                                                                 

                                                                       

Kalman filter structure leads to this realisation of the 

controller which is easy to implement and the state 

estimates may also be useful for condition monitoring 

purposes. A simple way to initialise the filter is to run the 

simulation and copy the steady state values of states. 
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 Fig. 4:    NGMV Optimal Controller in State-Space Kalman Filtering Form 

 

4.4 Systems Analysis                                                                      

For linear systems stability is ensured with GMV 

designs when the combination of a control weighting and 

an error weighted plant model is strictly minimum-phase 

(Grimble 2005 [18]).  For nonlinear systems a related 

operator equation for the t-varying system must have a 

stable inverse.  These stability results are established 

below. First write the state estimate in the operator form:
 1 1

1 0 2 1
ˆ( | ) ( ) ( ) ( ) ( )f fx t t T z e t T z u t k   

  
(61)

 
 

To identify the form of these operators and for the stability 

analysis neglect the input bias or DC signals and all 
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stochastic inputs other than the reference signal.  Note 

from (36) and (37) for the system model of interest:  

ˆ ˆ( | ) ( ( ) ( )) ( | 1)f ex t t I K t t x t t  

 0 1
( ) ( ) ( ) ( )fK t e t t u t k   but from (35), 

1
ˆ ˆ( | 1) ( 1) ( 1| 1) ( 1) ( 1)x t t t x t t t u t k          

Thence
 
 

 
1

1

0
ˆ( | ) ( ( ) ( )) ( ) ( ) ( )[f fex t t I I K t t z t K t e t


  

 1

1( ( ) ( )) ( 1) ( ) ( ) ( )]f feI K t t t z K t t u t k


     (62) 

It follows that the above operators in (61) have the form:
                                            

 
1

1 1

1 ( ) ( ( ) ( )) ( ) ( )f f feT z I I K t t z t K t


   
 

(63) 

 
1

1 1

2 ( ) ( ( ) ( )) ( )f f eT z I I K t t z t


   
  

 1
( ( ) ( )) ( 1) ( ) ( )f feI K t t t z K t t


   

 
(64)

 
The following expression, obtained by simple 

manipulation [10], is also required: 

 
1 1

2 1 0
( ) ( ) ( )f f k

T z T z Φ t  
 

(65) 

4.5 Output Minimised                            

For the stability analysis an expression is required for 

the control action in terms of the closed-loop operators 

with input reference signal. Recall from equation(55) and 

substituting from (61) 
1 1

2 1 0
( ) ( ) ( )f f k

T z Φ t T z   , 

00

ˆ ( | )t k t  0

1
( )

k

fT r t
1

0( ( , )[ k z




          
0

1 1( ) ) ( )]k k

k k ckΦ t z u t


  

 
(66)

 
Operator Relationship:

  
  The second operator relationship, 

again obtained by straightforward manipulation [10] is:
 

0 01

0 0 0
( ) ( ) = ( , ) ( ) ( )

k k k kt k t k z k z t t z      (67)
 

Using this result the minimised output (66) may be written  

0 0

0 1 0 0 00

ˆ ( | ) ( ) ( ( ) ( ) ( )[k k k

ft k t T r t t k t k t k z   
     

0 1( )) ( )]k ckt k u t  
 

(68)
 

Now from equation (45): 

      0 0 0 0
( )c c c cy t k r t k y t k x t k       and

     0 0c cx t k y t k  

 0 0 10 0
( ) ( ) ( )c c kk k
t k t k u t   

 

where
 0k  

denotes the transfer between
1( )u t k and the 

states of the state dependent sub-system. Clearly, 

0

0 0 0 0
( ) ( ) ( ) ( )

k k
t k t k t k z t k  
    

 

0 00 0
( ) ( )c ck k
t k t k   

 
(69) 

The first term on the right of this expression represents the 

cost-function state weighting and the second the output 

weighting term.  Recall the term
 

0

0 1
( )

k k

kt k z


 is null 

when there is no through term and 
0 1k k  .   Thence, the 

cost which predicts forward  
0k  steps ensures that the term

0

0 0 0
( ) ( ) ( )

k k
t k t k t k z  
    includes a through term, 

which is important for the definition of the optimal cost. It 

is therefore helpful to define the transfer-operator:  

0 00 00 ( ( ) ( ))c ck k
t k t k   

 
(70) 

 This
 
represents the transfer between the signal 

1u  and the 

output to be minimised
0

{ ( )}t .    

Then equation (68) becomes:
   

0 0
ˆ ( | )t k t  0 1

1 12( ) ( ) ( ) ( )
k

f k ckT z r t u t

    (71) 

4.6  Stability Analysis  

To simplify the stability analysis, recall that the 

external inputs, except the reference r(t), were assumed 

null in the previous section.  Using (71) the condition for 

optimality 
0

ˆ ( | ) 0t k t  
 
leads to the optimal control as:

 
 01 1

1 12( ) ( ) ( ) ( )( )
k

ck f ku t T z r t u t

 
    (72) 

Rearranging, the optimal control and plant output signals, 

in terms of the exogenous input, become: 

  0
1 1

112( ) ( ) ( )
k

ck fku t T z r t

 
 

 
(73) 

   01 1

112( ) ( ) ( )
k

ck fku t T z r t

  
 

(74) 

where the delay-free plant model 0 1k kk 
 
and

 0k  
denotes the transfer-operator between 

1( )u t k and the 

states of the state-dependent sub-system.  

To show that the closed-loop system is stable, recall that 

various plant operator blocks are assumed to be finite gain 

stable.  Note the series connection of two finite gain 
2m  

stable systems is 
2m  stable.  The assumption was that the 

cost-weightings are chosen, so that the operator 
1

2 1
( )ckk

  is finite gain stable.  The cost will often 

involve just the weighted error and control signals, since 

the state weighting will be omitted.  In this case the 

following operator must be finite gain stable: 

   
1 1

0 00 1( ) ( )( (c ck c ckk k k
t k t k

 
      (75) 

Also observe that the internal feedback loop in the 

controller in Fig. 3 does not contain any subsystem that is 

unstable.  It only contains 1k which was assumed finite 

gain stable. The consequence is that the inverse dynamics 

will not attempt to cancel unstable parts of the plant model. 

The operator in (75) must of course be "finite gain" 

stable for the above result to ensure closed loop stability of 

the system. To provide an easy method of finding starting 

values of cost-weightings it can be shown that if there 

exists say a PID controller that will stabilize the NL 

system, without transport-delay elements, then a set of 

cost weightings can be defined to guarantee the existence 

of this inverse and ensure the stability of the closed-loop. 

Note that the controller includes a model of the 

nonlinear system and does not involve linearization 

(Shamma and Athans, 1992 [26]).  Moreover, it is not like 

the original state-dependent control solutions where the 

system was assumed frozen at a current operating point so 

that the steady-state Riccati equation solution could be 

used [14].  Proving stability in either case is problematic.  

It is of course not simple to guarantee stability for state 

dependent or LPV systems but at least the controller is like 

a fixed model based solution so its behaviour should be 
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more predictable and the results referred to above provide 

a starting point for cost weighting selection. 

The controller can be represented in an alternative form 

that is good for implementation and useful for the analysis 

in the next section. First note that the controller structure 

shown in Fig. 3 involves the predicted states from the 

Kalman Filter, but the two different paths from the 

observations and control inputs can be separated in Fig. 5. 
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Fig. 5:    Feedback Control Signal Generation and Controller Modules 

 

5.0    Design Example 

The application of the NGMV controller to the control 

of a simple chemical process is considered. The process is 

an irreversible exothermic first order reaction, which takes 

place in a continuous stirred tank reactor (CSTR), as shown 

in Fig. 6. It is assumed that the liquid in the reactor is 

perfectly mixed and the feed flow is equal to the product 

outflow. The cooling jacket temperature Tc is regarded as 

an input to the process and the product concentration Ca is 

regarded as the output. Similar types of process have been 

studied extensively in the literature as they present very 

challenging control problems. 

 

 
Fig. 6:     Continuous Stirred Tank Reactor Possibly Unstable 

Process  (input variable is cooling jacket temperature Tc and 

output is the concentration Ca) 

 

The CSTR processes exhibit rich nonlinear behaviour, 

involving multiple steady-state solutions and both stable 

and unstable equilibrium points.  The nonlinear dynamic 

responses vary widely with operating point. Consider a 

normalized dimensionless model given in Hernandez and 

Arkun (1993, [4]), where the values of the parameters are 

as listed in Table 1: 

 

 1 1 1 2 2
(1 )exp (1 )ax x D x x x       

 2 2 1 2 2 2
(1 ) exp (1 ) ( )ax x BD x x x u x         

1y x  (76) 

 

By defining a new scaled input: ( 4) / 8su u  , both 

the input and output signals are contained in range (0,1). 

 

Table 1:  CSTR model parameters 

Parameter Meaning Value 

Da Damköhler number 0.072 

 dimensionless activation energy 20.0 

B heat of reaction coefficient 8.0 

 heat transfer coefficient 0.3 

 

 A polynomial ARMA model was identified from 

simulation data in [21] and this was followed by the use of 

a sigmoid function. Such a structure with output 

nonlinearity is not suitable for the state-dependent NGMV 

theory.   A new nonlinear ARMAX model using the tools 

provided with the System Identification Toolbox for 

Matlab was therefore identified.  The dimensionless 

sample time of 0.5 units was used to generate the data for 

identification. An interesting feature of the CSTR model is 

the presence of two stable regions, at the two ends of the 

output range, separated by an unstable region.  It is 

difficult to tune the system in this unstable region, from 

which the system output appears repelled.  The effort was 

made to include the whole operating range in the 

estimation data. The following model was found to provide 

a good balance between accuracy and complexity: 

 

0 1 2 3 4( ) ( 1) ( 2) ( 1) ( 2)s sy t y t y t u t u t            
2

5 6 7( 1) ( 1) ( 2) ( 1) ( 1)sy t y t y t y t u t         

3 2

8 9 10( 1) ( 2) ( 1) ( 1) ( 2)sy t u t y t y t y t         
 

 

(77)

 
 

with the estimated parameter values: 

 

0 1 2 30.0129, 0.0390, 0.5112, 0.0219,       
 

4 5 6 70.0290, 7.8027, 6.5853, 0.1232,       

8 9 100.0877, 7.9623, 7.0073       

 

q, T0, 

Ca0 

q, T, Ca 

Tc 

T, Ca 

A  B + 

heat 
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The model verification is shown in Fig. 7 and a good 

match is confirmed between the plant and model responses 

for both the estimation and the validation data. 
A comparison between the continuous-time system 

static characteristics is shown in Fig. 8. The curves were 

plotted by considering a range of steady-state outputs, and 

computing the corresponding inputs from equations (76) 

and (77).  Multiple equilibrium points are evident from the 

plots and the unstable equilibriums on the model curve 

have been highlighted in green. Note that these correspond 

with the local negative gain (slope) of the model, which 

may be an issue when selecting the control weighting sign. 

 

 

0 50 100 150 200 250 300 350 400 
0 

0.5 

1 
Output y 

0 50 100 150 200 250 300 350 400 
0 

0.5 

1 
Input u 

s 

Time  
Fig. 7:  NARX Model Validation: plant (solid), model (dashed). 

(The estimation data used for identification: up to time 200) 

 

For the purpose of the NGMV control, the above 

polynomial NARMAX model was converted to a state-

dependent model by defining the following states: 

 

1 2 3( ) ( ), ( ) ( 1), ( ) ( 1)sx t y t x t y t x t u t     . 

 

The state-dependent model then follows as: 
2 2

1 1 11 1 1 1 1

2 2

3 3

4 4

( 1) ( ) 11 1 1 1

( 1) ( ) 01 0 0 0
( )

( 1) ( ) 10 0 0 0

( 1) ( ) 00 0 0 1

s

x t x t xx x x x x

x t x t
u t

x t x t

x t x t

           
      

        
      
      

          

(78) 

1( ) ( )y t x t
 

(79) 
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Fig. 8:  Static Characteristics for the System 

5.1   Control design and simulation results 

The major challenge is to control the system around an 

unstable equilibrium point, i.e. for the middle 

concentration values. As the nominal "unstable" operating 

point choose the point corresponding to the control input 

of ( ) 0.5su t  . Based on the model equation, the 

corresponding output steady-state values can be computed 

as 
01 0.1437y  , 

02 0.3652y   and 
03 0.7658y  .  Out of 

these 3 solutions, y02 is the unstable equilibrium and the 

control objective will consist of regulating the system 

around this value.      The NGMV controller was designed 

for this problem using: 

Reference: 1 1( ) 0.05 (1 0.95 )rW z z    

Error weighting:    1 1 2 1 2( ) (1 0.1 ) (1 0.97 )cP z z z      

Control weight: 1 1 2 1 2( ) 0.55 (1 0.3 ) (1 0.9 )ckF z z z       

The reference model is normally chosen to be a near 

integrator since most reference signals are slowly changing. 

The error weighting is also chosen as a near integrator and 

this introduces integral action type behaviour in the 

controller. Finally, the control signal costing is chosen to 

include a lead term to ensure the controller rolls off but can 

also include a lag term to introduce derivative type action 

for augmenting stability in the mid frequency range. 

The goal was to move the process from the stable 

equilibrium 
01 0.1437y   to the unstable operating point: 

02 0.3652y  , and keep it there in the presence of a step 

output disturbance. The results are shown in Fig. 9 and 

despite a rather oscillatory control signal response to the 

disturbance the objectives were satisfied. 

50 100 150 200 250
0.1

0.2

0.3

0.4

0.5

Output

 

 

50 100 150 200 250
0

0.2

0.4

0.6

0.8
Control

 
Fig. 9:  NGMV Output Tracking and Regulation About an 

Unstable Operating Point  
(Upper plot: output (solid), set-point (dotted)) 

 

The final test consisted of tracking the concentration set-

point across the operating range. Since the dynamics and 

nonlinearity of the system vary wildly for different 

operating conditions some form of nonlinear control 

costing is needed. A simple approach is to schedule the 

changes in weighting by defining a separate set of the 

control weighting parameters for each operating regime 

(four of them were specified), and to then use a simple 

switching scheme for these parameters.  The control 

weighting was parameterized as: 

 1 1 2 1 2
( ) (1 ) (1 )ckF z z z    

     



 11 

and the parameters ,  and  were tuned separately for 

each region corresponding to a single step change (the 

switching variable used was the output concentration). The 

Table 2 contains the values of the parameters and the 

corresponding frequency responses of the control 

weighting are as shown in Fig. 10. 

 
Table 2: Control Weighting Parameters 

Region centre   

0.1 -0.3 0.92 0.4 

 -0.3 0.92 0.5 

0.4 -0.3 0.92 0.65 

 -0.3 0.92 0.3 

 -0.5 0.9 1.2 
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Fig. 10:  Bode Plots of Gain-Scheduled Control Weights 

 

The above control costing values were collected in 

look-up tables and switched using gain-scheduling. Note 

that this is not quite the same as using a traditional gain 

scheduling type of linear control law.  The nominal 

simulation results (with the NARX model as the “plant”) 

are shown in Fig. 11 and good tracking is achieved across 

the operating range.  

  
 

Fig. 11:  NGMV Control of Output Tracking Across the 

Operating Range  
(with a gain-scheduled control weighting and nominal model) 

 

 

 
Fig. 12:  NGMV Control Output Tracking Across the 

Operating Range (with a gain-scheduled control weighting for 

the original model) 

 

On the other hand, the simulations for the original system, 

shown in Fig. 12, result in a deterioration in performance 

within the unstable region (although tracking in the 

“stable” region is actually improved). This is an expected 

effect of plant-model mismatch and can be corrected by 

identifying a better model – by for example including more 

regresses terms, not necessarily polynomial ones. 

6.0 Links to the Smith Predictor  

The optimal controller can be expressed in a similar 

form to that of a Smith Predictor to provide some 

confidence in the design.  This enables a nonlinear state-

space version of the Smith Predictor to be introduced, but 

this structure also limits the applications to open-loop 

stable systems.  A further result is required based on (67) 
0 01

0 0
( , ) ( ( ) ( ) ) ( )

k k k kk z t k z t z t k       and 

on (65) 
1 1

2 1 0
( ) ( ) ( ) ( )f f k

T z Φ t t T z   .   That is, 

0 01

0 1 0 2
( ( , ) )

k kk k

f k fk z T z T z   
  

    

0

0 0 0
( ) ( ) ( ) ( )

k k
t k t k z t k t k  

       (80) 

The state dependent subsystems in the controller in Fig. 5, 

may be modified by adding and subtracting terms, and 

combining inner-loop blocks, using (80): 

0 01

0 1 0 2
( , )

k kk k

f k fk z T z T z   
  

  

0

0 0 0 0
( ) ( ) ( ) ( )

k k
t k t k t k z t k  

        

This result suggests the controller can be simplified to the 

Smith predictor type structure in Fig. 13. Note the control 

signal u  to the feedback signal p  that the transfer is null 

when the model 0 1

k k

k k kz z   matches the plant 

model.  It follows that the control action, due to reference 

signal r  changes, is not due to feedback but involves the 

open-loop stable compensator involving the block 

1

k

fT and the inner nonlinear feedback loop.  It 

follows that the control action due to the reference changes 

will be due to the cascade of these two blocks.  
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Normally the state weighting is null and the inner-loop 

feedback path transfer may then be written as: 

0

0 0 0 0
( ) ( ) ( ) ( )

k k
t k t k t k z t k  
       

0 0 00 0 0
( ) ( ) ( )c c ck k k
t k t k t k        (81) 

In this case the open-loop transfer operator for the inner-

loop, includes the weightings: 1

ck c

  acting like an inner-

loop controller.  These weightings can be chosen to be of a 

filtered PID controller form.  The reverse of this argument 

suggests that cost weightings can be found that stabilise 

the closed loop given an initial stabilising control exists 

for the delay free system.  
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      Fig. 13:    Nonlinear Smith Predictor Compensator and 

Internal Model Structure 

7.0 Concluding Remarks 

A simple controller for nonlinear multivariable systems 

was introduced that extends the family of NGMV 

controllers to much more general systems. The major 

development over the basic NGMV control law in [6] 

involves the introduction of a more general model 

structure, where the nonlinearities may be associated with 

either inputs or outputs and include open-loop unstable 

elements.  The solution is for systems represented in a 

combination of nonlinear operator, state dependent or 

linear state-space system forms.  Previous work was 

restricted to plants where the nonlinear subsystem was 

only at the input and was assumed stable.   

The inclusion of the state-dependent sub-system model 

has the advantage that it may be used to represent open-

loop unstable plants with both input and output 

nonlinearities. The model state dependent model structure 

actually absorbs LPV type models and even certain classes 

of hybrid models. The class of controllers are not of course 

potentially so valuable as nonlinear predictive controllers 

that in general have better stability and performance 

characteristics. However, the basic concepts and controller 

structure are simple and they therefore provide a possible 

replacement for PID controls, which is a very different 

target problem. Adaptive control using the philosophy will 

be the subject of future research (Zhu et. al. [23] 1999). 
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